

Department: Water Affairs REPUBLIC OF SOUTH AFRICA

REPORT NO: P WMA 11/U10/00/3312/2/2/1

The uMkhomazi Water Project Phase 1: Module 1: Technical Feasibility Study: Raw Water

WATER REQUIREMENTS AND RETURN FLOWS REPORT

WRITE UP 1: POSSIBLE WATER SUPPLY FROM SMITHFIELD DAM TO SURROUND COMMUNITIES (SMITHFIELD DAM LOCAL WSS)

FINAL

MAY 2014

The uMkhomazi Water Project Pha	se 1: Module 1: Technica	I Feasibility Study Raw Water
---------------------------------	--------------------------	-------------------------------

Project name:	The uMkhomazi Water Project Phase 1: Module 1: Technical Feasibility Study Raw Water
Report Title:	Water requirements and return flows report
Sub-report title:	Possible water supply from Smithfield Dam to surrounding communities (Smithfield Dam local WSS)
Authors:	Andriëtte Combrinck and Guy Robertson
PSP project reference no.:	J01763
DWA Report no.:	P WMA 11/U10/00/3312/2/2/1
Status of report:	Final
First issue:	February 2014
Final issue:	May 2014

CONSULTANTS: AECOM (BKS*) in association with AGES, MM&A and Urban-Econ. Approved for Consultants:

Hermien Pieterse Study Leader

Gerald de Jager Task Leader

DEPARTMENT OF WATER AFFAIRS (DWA): Directorate: Options Analysis

Approved for DWA:

K Bester Chief Engineer: Options Analysis (East) LS Mabuda

Chief Director: Integrated Water Resource Planning

* BKS (Pty) Ltd was acquired by AECOM Technology Corporation on 1 November 2012

Prepared by:

AECOM SA (Pty) Ltd

PO Box 3173

Pretoria

0001

In association with:

Africa Geo-Environmental Services

Mogoba Maphuthi and Associates

Urban-Econ

Mogoba Maphuthi & Associates (MMA)

PREAMBLE

In June 2014, two years after the commencement of the uMkhomazi Water Project Phase 1 Feasibility Study, a new Department of Water and Sanitation was formed by Cabinet, including the formerly known Department of Water Affairs.

In order to maintain consistent reporting, all reports emanating from Module 1 of the study will be published under the Department of Water Affairs name.

TABLE OF CONTENTS

Page

1	INTR	ODUCT	ION	1-1
2	CUR	RENT A	ND ALTERNATIVE FUTURE WATER SOURCES	2-1
	2.1	Currei	nt water sources	2-1
	2.2	Altern	ative future water sources	2-3
3	FEA	SIBILITY	OF WATER SUPPLY FROM SMITHFIELD DAM (SMITHFIELD DAM LOCAL	. 21
	VV 3	5)		3-1
	3.1	Desig	n of the Smithfield Dam local WSS	3-1
		3.1.1	Description	3-1
		3.1.2	Water requirements	3-2
		3.1.3	Design	3-3
	3.2	Costs	of the Smithfield Dam local WSS	3-6
		3.2.1	Capital costs	3-6
		3.2.2	Operational and maintenance costs	3-7
	3.3	Feasib	pility of the Smithfield Dam local WSS	3-7
4	Сом	ICLUSIO	NS	4-1
5	Rec	OMMEN	DATIONS	5-1
6	Ref	ERENCE	ΞS	6-1

LIST OF FIGURES

Page

Figure 1.1:	Google image of the communities surrounding Smithfield Dam 1-2
Figure 2.1:	Chart showing total sources of water for communities within the Smithfield Dam local WSS
Figure 2.2:	Water supply areas within the uMkhomazi River catchment as defined by the All Towns Reconciliation Strategy Communities
Figure 2.3:	Proposed supply area of the Smithfield Dam local Water Supply Scheme 2-6
Figure 3.1:	Proposed layout of the Smithfield Dam local WSS

LIST OF TABLES

Page

Table 3.1:	Communities surrounding Smithfield Dam	
------------	--	--

APPENDICES

- APPENDIX A INDIVIDUAL CHARTS OF CURRENT (2013) WATER RESOURCES UTILISED BY COMMUNITIES SURROUNDING SMITHFIELD DAM
- APPENDIX B DETAILED BOQ OF THE PUMPS AND PUMPSTATION REQUIRED TO SUPPLY THE SMITHFIELD DAM LOCAL WSS FROM THE DAM (BASED ON VAPS)
- APPENDIX C DETAILED BOQ OF THE PIPELINE NETWORK REQUIRED TO SUPPLY THE SMITHFIELD DAM LOCAL WSS FROM THE DAM (BASED ON VAPS)
- APPENDIX D GENERAL ASSUMPTIONS FOR THE URV CALCULATION OF THE SMITHFIELD DAM WSS
- APPENDIX E URV CALCULATION

LIST OF ABBREVIATIONS

DWA	Department of Water Affairs
FSL	Full supply level
masl	Meters above sea level
wsa	Water supply area
WSA	Water Service Authority
WSP	Water Service Provider
WSS	Water supply scheme

LIST OF UNITS

cm	centimetre
ha	hectares
kł	kilolitre
4 km ²	square kilometres
ł	litre
ℓ/c/d	litre per capita per day
m	metre
mm	millimetre
m³	cubic metre
m³/s	cubic metre per second
million m ³ /a	million cubic metres per annum
M٤	mega (million) litre

1 INTRODUCTION

The Smithfield Dam site is located within the Ingwe Local Municipality which falls within the Sisonke District Municipality's area of jurisdiction. Currently there are no communities that will be inundated by the proposed dam. However, several scattered communities, many of which are located on top of hills, surround the Smithfield Dam.

As part of the feasibility study for the proposed Smithfield Dam, a desktop-level study was carried out to ascertain the following:

- The current water sources being used by the communities surrounding the dam; and
- The possibility of feasibly supplying these communities from Smithfield Dam in the future.

For this purpose a desk-top design was carried out for a bulk water supply scheme comprising a (1) water treatment works, (2) pumpstation with associated pump(s), and a (3) pipe network with associated reservoirs. For ease of reference this possible scheme will be referred to as the *Smithfield Dam local water supply scheme (WSS)* for the purpose of this report.

An assumption had to be made on the supply area of the proposed Smithfield Dam local WSS. As such, 24 communities in relatively close proximity of the Smithfield Dam (both on the south-western side and north-eastern side of the dam) were chosen to be included in the scheme. These communities are listed in **Table 3.1** and their locations shown in **Figure 1.1**. It must be noted that this supply area was assumed and should be confirmed by the relevant authorities, should the need arise at a later stage.

No formal communities (apart from Deepdale, Claremont and Camden which only consists of a 4/5 houses each and weren't defined as separate supply areas by the *2001 Census* (Statistics South Africa, 2002)) currently exist within close proximity of the northern side Smithfield Dam. Impendle, which is a considerable distance from the dam falls within the Impendle Town and Enguga WSS, as defined by the *All Towns Reconciliation Strategy* (Water for Africa, Aurecon, Water Geosciences, & Charles Sellick and Associates, 2011).

Figure 1.1: Google image of the communities surrounding Smithfield Dam

2 CURRENT AND ALTERNATIVE FUTURE WATER SOURCES

2.1 CURRENT WATER SOURCES

For the purpose of determining the water sources currently being utilised by the communities surrounding the dam (and assumed to be included in the proposed Smithfield Dam local WSS), information from the *2001 Census* (Statistics South Africa, 2002) was used to be consistent with the information integrated as part of the *water requirements and return flows task* conducted at the beginning of this study. At the time, information from the *2011 Census* wasn't available yet (this only became available on 30 October 2012). The following categories for "access to water" for households were captured during the *2001 Census:*

- Regional/local water scheme (operated by a Water Service Authority or Provider)
 - Piped water (tap) inside dwelling
 - Piped water (tap) inside yard
 - Piped water on community stand: distance less than 200m
 - Piped water on community stand: distance greater than 200m
- Borehole
- Spring
- Rainwater tank (excluded from Figure 2.1 because less than 0.5%)
- Dam/pool/stagnant water
- River/stream
- Water vendor (excluded from Figure 2.1 because less than 0.5%)
- Other

Figure 2.1 provides a summary of the 2013 total water sources being used by the communities surrounding the proposed Smithfield Dam. In addition, the individual charts of each community surrounding the dam are included in **Appendix A**. As can be seen from the combined graph 73% of users currently have access to water services in the form of piped water.

It must be noted that, while capturing information on "access to water" during the 2001 Census many households with piped water did not necessarily know where

the water came from. Enumerators were instructed that, in most cases, piped water came from local or local water schemes, boreholes or springs. They were also told that if the piped water was from a local or local scheme, this should take precedence and that the respondent should not answer, for example, 'borehole', even if the scheme used a borehole. The reason for this approach was that the question was intended to be an indicator of water quality rather than convenience and it was assumed that water from a scheme was of good quality. People who did not have access to water from a scheme were asked to indicate one of the other sources. As such, the exact source of piped water, as indicated by **Figure 2.1**, could not be concluded form the *Census 2001* information.

In addition, according to the *All Towns Reconciliation Strategy* (Water for Africa, Aurecon, Water Geosciences, & Charles Sellick and Associates, 2011) the communities within the Bulwer Donnybrook WSS (defined and discussed in the following **Section 2.2**), which include some of the communities surrounding Smithfield Dam, receive their water from *springs*, *groundwater* and *surface water* supplies from a *weir on the Mkobeni River*.

However, the *All Towns Reconciliation* Strategy didn't make a distinction between the sources of supply to each individual community/supply area, thus this information also didn't assist in a conclusion towards the exact source of piped water to communities surrounding Smithfield Dam.

Figure 2.1: Chart showing total sources of water for communities within the Smithfield Dam local WSS

2.2 ALTERNATIVE FUTURE WATER SOURCES

The proposed supply area of the Smithfield Dam local WSS as defined in Section 1 coincides with the *Bulwer Donnybrook water supply area*. This water supply area was defined by the *All Towns Reconciliation Strategy* (Water for Africa, Aurecon, Water Geosciences, & Charles Sellick and Associates, 2011) and is shown in Figure 2.2 (the Bulwer Donnybrook water supply area is indicated in orange). It is planned as a regional bulk water scheme earmarked to be supplied in future by the proposed Bulwer Dam on the Luhane River (to be augmented from the Pholela River at a later stage).

Other than augmentation from the Bulwer Dam, the Bulwer Donnybrook water supply area could also be augmented in future by (1) groundwater development, and (2) the implementation of a WC/WDM programme.

However, the preferred scheme to supply the Bulwer Donnybrook water supply area in future appears to be the development of storage capacity on the Luhane River (Bulwer Dam to be augmented from the Pholela River at a later stage) together with a regional bulk water scheme from this proposed dam. As such, a detailed feasibility study and detailed design have already been completed for the proposed Bulwer Dam and a water use licence and environmental approval has been obtained (*Gray, Personal Communication, 2014*).

The proposed supply area of the Smithfield Dam local WSS is shown in **Figure 2.3.** This figure also indicates how it coincides with the Bulwer Donnybrook WSS's supply area. The possibility therefore exists to supply the selected communities from the Bulwer Dam, as opposed to implementing a new local WSS.

In order to determine the most feasible scheme to supply the communities around Smithfield Dam it is recommended that the URV of the Smithfield Dam local WSS be compared to that of the Bulwer Donnybrook WSS to be supplied from Bulwer Dam. However, it must be noted that:

- the supply areas of the two schemes differs (with the Bulwer Donnybrook WSS covering a larger area i.e. a greater number of communities will be supplied by this scheme); and
- the proposed Smithfield Dam local WSS is at least ten years away from possible completion due to the anticipated possible implementation dates of the uMWP1. Other localised sources of water will most likely be able to be made available sooner.

Figure 2.2: Water supply areas within the uMkhomazi River catchment as defined by the All Towns Reconciliation Strategy Communities

Figure 2.3: Proposed supply area of the Smithfield Dam local Water Supply Scheme

3 FEASIBILITY OF WATER SUPPLY FROM SMITHFIELD DAM (SMITHFIELD DAM LOCAL WSS)

3.1 DESIGN OF THE SMITHFIELD DAM LOCAL WSS

3.1.1 Description

The supply area of the proposed Smithfield Dam local WSS has been divided into two regions feeding communities to the south and north of the uMkhomazi River. For ease of reference these two regions will be referred to as the *south-western* and *north-eastern* regions respectively.

The proposed Smithfield Dam local WSS has been designed to include the following infrastructure:

- A *pipeline* to abstract water from Smithfield Dam's outlet works;
- A *water treatment works* at the downstream side of the dam wall to treat the raw water from the dam to <u>potable water standards</u>;
- A *pumpstation* at the downstream side of the dam wall with a *pump* requiring 263 kW of power, to circulate the water through the system. With friction losses, the pump connected to the bulk mainlines would be required to pump to a pressure head of 744 m.
- Two bulk mainlines which would deliver water to bulk reservoirs at heights of 1369 masl (south-western line) and 1416 masl (north-eastern line), indicated with yellow markers in Figure 3.1.
- Reserve water storage reservoirs for each community and for each bulk supply line. In this regard two days reserve storage has been allowed for in order to ensure a continued supply to the communities in case of maintenance or malfunction of the system.
- A number of *gravity lines* to deliver water from the bulk reservoirs to the various communities;
- A *booster pump* requiring 50 kW of power for the supply of water to Kwelaba-Ntwana, Enkwelaba Ntwana, Mkobeni Kamensia and Xosheyake from the 1369 masl storage tank (south-western line). This pump would need to supply a further 504 m of pressure head, respectively, when friction losses are taken into consideration.

3.1.2 Water requirements

For the purpose of determining the water requirements of communities within the Smithfield Dam local WSS, population data per sub-place/enumeration area from the 2001 Census (Statistics South Africa, 2002) was used in conjunction with an average per capita consumption of 60 *e/capita/day* (associated with "piped water inside yard" typical for these type of rural areas). This is the preferred allocation for domestic water consumption for households with dry sanitation as given by *Table 9.11: Water consumption in areas equipped with standpipes, yard connections and house connections (adapted from Department of Water Affairs & Forestry, (1992): Guidelines for the selection of design criteria from the Red Book (CSIR Building and Construction Technology, 2000).*

Taking a population growth rate of 1.1% for the Ingwe Local Municipality as taken from *Table 3.9 Annual population growth rates (2001 to 2012)* of report *P WMA 11_U10_00_3312_2_2 - Water Requirements and Return Flows* and applying this growth rate over the lifespan of the pipeline (50 years) to the water demand; these values were used to calculate the water supply design requirements of the system.

The results of these calculations are included in **Table 3.1** and show a total water requirement for the Smithfield Dam local WSS of **0.58 million m³/a** in 2013 and an ultimate water requirement in 2063 of **0.89 million m³/a** based on growth in population over 50 years.

If a future increase in service level is assumed and the average per capita consumption are increased to *90 l/capita/day* in 2063 (which assumes that households will be upgraded to "piped water inside dwelling") the ultimate water requirement in 2063 is estimated to be **1.34 million m³/a**.

The current design, i.e. pipeline network, of the Smithfield Dam local WSS (as discussed in the following section) will be able to accommodate this increased water requirement, however, the pumping requirements will become extensive and will necessitate a re-evaluation of the inclusion of some of the high-lying communities within the scheme.

As this design was only conducted on desktop-level, and the supply area of the Smithfield Dam WSS is still uncertain as discussed in **Section 1**, it is

recommended that an allocation of **1 million m³/a** be made from Smithfield Dam, to be confirmed at a later stage.

This water requirement is deemed sufficient as the current design assumes that the communities within the Smithfield Dam local WSS will *only* be supplied from the dam in future. In actual fact, they may be dually supplied by their current sources i.e. *springs*, *groundwater* and *surface water* supplies from a *weir on the Mkobeni River*, and only augmented from the Smithfield Dam / Bulwer Dam, depending on which scheme are implemented first.

3.1.3 Design

For the determination of the (1) pumps and pumpstation and (2) pipeline planning requirements and costing the *Vaal Augmentation Planning Study - VAPS (DWAF, 1996)* was used as a guide. For this purpose the elevations of the communities, their height above the FSL of the dam (i.e. 930 masl) and the required length of pipeline to supply them with water have been calculated and are summarised in **Table 3.1**. Further to this rates from the *VAPS* were updated to be representative of 2014 costs.

In the case of the (3) water treatment work and the (4) bulk reservoirs and reserve water storage reservoirs unit costs were used to estimate the costs.

3-4

Table 3.1: Communities surrounding Smithfield Dam

Sub-place / Community	Total Population (Current - 2013) <i>(number)</i>	Total Population in 50 years (2063) assuming 1.1% growth (number)	Ultimate total water requirement in 2063 (at a rate of 60 ℓ/capita /day) (m ³ /day)	Pipeline distance to supply water to community from Smithfield Dam	Elevation of community (masl)	Elevation of community above the FSL (930 masl) of the Smithfield Dam (m)
South-wasto	rn lino		(,,))	()	(()
Bethlehem	1501	2327	174	11.8	1311	381
Bheni	291	451	34	21.3	1270	340
Chibini	435	674	51	19.4	1256	326
Enkwelaba Ntwana	1831	2838	213	30.6	1352	422
Hlanganai	401	622	47	21.6	1190	260
Kwelaba- Ntwana	2305	3573	268	30.0	1347	417
Machabasini	546	846	63	17.3	1036	106
Maczobeni	497	770	58	20.1	971	41
Mahohoho	845	1310	98	21.5	1185	255
Mdayane	257	398	30	19.3	1032	102
Mkhohlwa	442	685	51	16.6	1036	106
Mkobeni Kamensia	983	1524	114	24.7	1427	497
Mqulela	908	1407	106	16.6	1162	232
Nonguqa	1658	2570	193	17.9	1081	151
Nyamana	1782	2762	207	18.9	1110	180
Nkumba	872	1352	101	22.1	1175	245
Phosane	694	1076	81	14.3	1176	246
Xosheyake	786	1218	91	32.0	1425	495
North-easter	n line	Γ		Γ	Γ	Γ
Ezibonvini	369	572	43	9.4	1126	196
Gudlintaba	400	620	47	10.4	1109	179
Jubane	361	560	42	12.7	1133	203
Maqadeni	877	1359	102	12.0	1136	206
Ncwadi	1458	2260	169	11.2	1289	359
Songizini	510	791	59	8.5	1175	245
Total				2		
			2442	(m³/day)		
Total water re	quirement in 2	063	2.44	(Ml/day)		
			0.89	(Mm³/a)		

* Water requirement values are inclusive of a peak factor of 1.25

3.2 Costs of the Smithfield Dam local WSS

3.2.1 Capital costs

a) Pumps and pumpstations

As mentioned in **Section 3.1** the suggested piping network would require two pumps requiring 288 kW and 50 kW of power respectively, to circulate the water through the system. The capital costs of these, inclusive of civil (30%) and mechanical and electrical (70%) works, were estimated at **R 20.17 million** (excl. VAT). A detailed bill of quantities (BoQ) (based on that obtained from the *Vaal Augmentation Planning Study (DWAF, 1996)*) is included in **Appendix B**).

b) Pipelines

The total capital cost of the pipeline network, including civil works (50%), was found to be approximately **R 47.07 million** (excl. VAT). A detailed BoQ (based on that obtained from the *Vaal Augmentation Planning Study (DWAF, 1996)*) is included in **Appendix C**).

c) Water Treatment Works (WTW)

As stated in Section 3.1 the Smithfield Dam local WSS needs to deliver <u>potable</u> <u>water</u> to communities surrounding the dam. Hence, the costs of treating the raw water to potable water standards needed to be included. As such the capital cost of a WTW located at the dam was determined and is calculated to be approximately **R 8.55 million** (excl. VAT) (based on a unit cost of R3.5 million/Ml/day).

d) Reserve water storage

For each community and for each bulk supply line, 2 days reserve storage has been allowed for as pointed out in **Section 3.1**. The total cost of implementation of the required reservoirs was estimated to be **R 18.96 million** (excl. VAT).

e) Total cost of implementation

Based on the costs as mentioned in Sections 3.2.1 a) to c) the total cost of installing the bulk infrastructure necessary to supply potable water to the

communities surrounding Smithfield Dam has been estimated as **R 94.75 million** (excl. VAT).

Further to this, an additional 10% can be added for engineering fees and 10% for environmental and social costs, bringing the total cost to **R 113.70 million** (excl. VAT).

It is important to note that the initial capital cost of supplying the site with electricity (for the operation of the pumps and WTW) has not been accounted for in this report as the cost of ESKOM infrastructure required for the supply of electricity to the site has been included in the greater *uMkhomazi Water Project Phase 1* project requirements.

3.2.2 Operational and maintenance costs

The estimated amount presented in **Section 3.2.1 e)** only represents the capital costs of implementing the scheme and is therefore not inclusive of any of the following:

- Electricity and associated running costs;
- Maintenance of pumps, pumpstation, pipelines and water treatment works; and
- Employment of professional persons to manage and operate water treatment works and pumpstations and to inspect pipelines.

These costs would be ongoing for the duration of the time that water is treated and pumped to the local communities and are estimated at **R 2.86 million/annum** for operational (electricity) costs and **R 1.60 million/annum** for maintenance costs in 2023, growing to **R 4.43 million/annum** for operational (electricity) costs and **R 1.91 million/annum** for maintenance costs in 2063.

3.3 FEASIBILITY OF THE SMITHFIELD DAM LOCAL WSS

To assess the economic efficiency of the Smithfield Dam local WSS a Unit Reference Value (URV) calculation was conducted. A URV is a common measure in South Africa to assess the economic efficiency of proposed water projects. This found that implementing, operating and maintaining the system from 2023 to 2063 would cost approximately **R 20.84/m³** of water supplied. General assumptions for calculating the URV are included in **Appendix D**.

This URV can now be compared to that of other schemes that are proposed to supply the communities surrounding Smithfield Dam e.g. the Bulwer Donnybrook WSS to be supplied from proposed Bulwer Dam as mentioned in Section 2.2

It must be noted that this URV is very high, and reflects the nature of supplying communities spread out on high lying areas from a large dam low down in a valley. More practical solutions may be sourcing water closer to the communities and at higher elevations. This could for example be the proposed Bulwer Donnybrook WSS for those communities closer to Bulwer, and local ground or surface water for other remote communities.

4 CONCLUSIONS

The following can be concluded with regard to the feasibility of supplying surrounding communities from Smithfield Dam:

Current water resources:

- Based on information from the 2001 Census (Statistics South Africa, 2002)
 73% of users surrounding Smithfield Dam currently have access to some form of piped water.
- However, the exact source of piped water could not be concluded from the Census 2001 information and might be sourced from either springs, groundwater and/or surface water (i.e. a weir on the Mkobeni River).
- In addition, it could also not be concluded whether the water supply of these communities is sufficient and whether the quality of water is acceptable.

Current and future water supply requirements:

- The current combined water requirement of communities within the Smithfield Dam local WSS is in the order of 0.58 million m³/a in 2013 growing to an ultimate future water requirement in 2063 of 0.89 million m³/a. This is based on an average per capita consumption of 60 *e*/*capita/day* (associated with "piped water inside yard" typical for these type of rural areas).
- If an increase in service level is assumed and the average per capita consumption are increased to 90 *l*/capita/day in 2063 (which assumes that households will be upgraded to "piped water inside dwelling") the ultimate water requirement in 2063 is calculated to be 1.34 million m³/a. This is still quite small for a local scheme covering such a large spatial area.

Water supply cost implications:

- The total capital cost of installing the bulk infrastructure necessary to supply potable water to the communities surrounding Smithfield Dam has been estimated as R 113.70 million (including engineering fees and environmental and social costs).
- In addition the operational (electricity) and maintenance costs that would be ongoing for the duration of the time that water is treated and pumped to the local communities is estimated at an ultimate cost of R 4.43 million/annum and R 1.91 million/annum respectively.

- These high costs can mainly be ascribed to the fact that:
 - The communities are spread far apart which would require an extensive piping system in order to provide them with water.
 - The communities have a large elevation difference between them and the FSL of Smithfield Dam (930 masl) resulting in high operation costs

Future water resources:

 Some of the communities surrounding Smithfield Dam are already earmarked to possibly be supplied from the Bulwer Donnybrook WSS. This scheme is currently in planning phase and will be supplied from the proposed Bulwer Dam.

Feasibility of the scheme:

 The URV of the Smithfield Dam-scheme was found to be R 20.84/m³ which is high for a water supply project.

Impact on the uMkhomazi Water Project

The ultimate supply of water to the Smithfield Dam local WSS of 0.89 million m³/a will not have any significant impact on the yield of the dam as it is relatively small (when compared to the transfer of water to the integrated Mgeni WSS that is estimated to be in the order of 336 million m³/a by 2063).

5 RECOMMENDATIONS

The following can be recommended with regard to the feasibility of supplying surrounding communities from Smithfield Dam:

Current water resources:

 An estimated water requirement of approximately 1 million m³/a should be made from Smithfield Dam for the supply of communities surrounding the dam.

Smithfield Dam local WSS vs. Bulwer Donnybrook WSS:

- In order to determine the most feasible scheme to supply the communities around Smithfield Dam it is recommended that the URV of the Smithfield Dam local WSS be compared to that of other schemes proposed for the area i.e. the Bulwer Donnybrook WSS to be supplied from Bulwer Dam.
- However, it must be noted that:
 - the supply areas of the two schemes differs (with the Bulwer Donnybrook WSS covering a larger area i.e. a greater number of communities will be supplied by this scheme);
 - the proposed Smithfield Dam local WSS is at least ten years away from possible completion due to the anticipated possible implementation dates of the uMWP1;
 - Other localised sources of water will therefore most likely be able to be made available sooner i.e. groundwater and management interventions such as Water Conservation/Water Demand Management (WC/WDM).
- Still, a recommendation is made that:
 - the water supply area from the Smithfield Dam (i.e. the Smithfield Dam local WSS) be extended to supply the exact communities earmarked to be supplied from the Bulwer Donnybrook WSS and the URV be recalculated and compared to that of the last-mentioned scheme.
 - the current water available to the communities within the Bulwer Donnybrook WSS be reconciled with the water requirements of these up to 2023 to assess their capacity to await the completion of Smithfield Dam.
 - a water balance and reconciliation study be conducted between the two options to determine the most efficient use of the available water resources.

- In this way:
 - The capital costs of building another stand-alone dam, i.e. Bulwer Dam, can be put off, as the Smithfield Dam will most likely be built to alleviate the current water shortages within the integrated Mgeni WSS, and in this way can be used to fulfil the dual role of supplying local as well as national communities in future.

Detailed feasibility study:

- Based on the above a detailed study should be conducted to analyse and confirm the:
 - Supply area of the Smithfield Dam local WSS/Bulwer Donnybrook WSS.
 - Current water sources utilised by each individual community within the Smithfield Dam local WSS/Bulwer Donnybrook WSS and the portion of the water requirement that could still feasibly be supplied from current, local sources in future (i.e. springs, groundwater and surface water supplies from a weir on the Mkobeni River). It is highly recommended that communities should continue to use their current water sources for as long as possible.
 - Ultimate water requirement of the Smithfield Dam local WSS/Bulwer Donnybrook WSS.
 - The preferred scheme (either the Smithfield Dam local WSS or Bulwer Donnybrook WSS) to supply this area in future.

General:

- It is recommended that the Smithfield Dam local WSS be included as a component in the uMWP1 scheme (and as such the capital cost of the scheme should also be included) with an allocation of 1 million m³/a.
- The possibility of a Smithfield Dam local WSS and treatment plant should be included in the Scoping Report of the EIA.

6 REFERENCES

- CSIR Building and Construction Technology. (2000). *Guidelines for Human Settlement Planning and Design* (Vol. 2). Pretoria: CSIR Building and Construction Technology.
- DWAF. (1996). *Vaal Augmentation Planning Study PC 000/00/14394.* Directorate of Project Planning, Department of Water Affairs and Forestry (DWAF).
- Gray, R. (2014). Personal Communication. Pietermaritzburg, South Africa: Jeffares & Green (Pty) Ltd.

Statistics South Africa. (2002). Census 2001. Pretoria, South Africa: Statistics South Africa.

Water for Africa, Aurecon, Water Geosciences, & Charles Sellick and Associates. (2011). Development of a Reconciliation Strategy for All Towns in the Eastern Region; First Stage Reconciliation Strategy for Bulwer Donnybrook Water Supply Scheme Area -Ingwe Local Municipality (Contract WP 9712). Pretoria, South Africa: Department of Water Affairs (DWA).

Appendix A Individual charts of current (2013) water resources utilised by communities surrounding Smithfield Dam

Figure A.1: Current water sources of Bheni residents

Figure A.2: Current water sources of Chibini residents

Figure A.3: Current water sources of Enkwelaba Ntwana residents

Figure A.4: Current water sources of Hlanganai residents

P WMA U10/3312/2/2/1 – Water requirements and return flows report: Write-up 1: Possible water supply from Smithfield Dam to surrounding communities (Smithfield Dam local WSS)

Figure A.5: Current water sources of Kwelaba-Ntwana residents

Figure A.6: Current water sources of Mdayane residents

Figure A.7: Current water sources of Mkhohlwa residents

Figure A.8: Current water sources of Mkobeni Kamensia residents

Figure A.9: Current water sources of Mqulela residents

Figure A.10: Current water sources of Nkumba residents

Figure A.11: Current water sources of Phosane residents

Figure A.12: Current water sources of Xosheyake residents

Figure A.13: Current water sources of Ezibonvini residents

Figure A.14: Current water sources of Gudlintaba residents

Figure A.15: Current water sources of Jubane residents

Figure A.16: Current water sources of Maqadeni residents

Figure A.17: Current water sources of Ncwadi residents

Figure A.18: Current water sources of Songizini residents

Figure A.19: Current water sources of Bethlehem residents

Figure A.20: Current water sources of Machabasini residents

Figure A.21: Current water sources of Maczobeni residents

Figure A.22: Current water sources of Mahohoho residents

Figure A.23: Current water sources of Nonguqa residents

Figure A.24: Current water sources of Nyamana residents

Appendix B Detailed BoQ of the pumps and pumpstation required to supply the Smithfield Dam local WSS from the dam (based on VAPS)

		Bulk Pumps	tation Bo	pQ		
	Description	· · ·	Units	2014 Rates	Quantity	Amount
1	Mechanical and Electrical		Sum	R 6 971 781	1	R 6 971 781
2	Civils	(% of 1)	%	30%		R 2 091 534
3	Landscaping	(% of 1-2)	%	2%		R 181 266
4	Miscellaneous	(% of 1-2)	%	10%		R 906 332
	SUB-TOTAL A		•			R 10 150 913
5	Preliminary and General	(% of sub-total A)	%	30%		R 3 045 274
6	Preliminary Works	a) access roads	km			R 0
		b) electricity to site	Sum			R 0
		c) Water to site (for construction)	Sum			R 0
		d) Railhead and materials handling	Sum			R 0
7	Accommodation		Sum			R 0
	SUB-TOTAL B					R 13 196 187
8	Contingencies	(% of sub-total B)	%	10%		R 1 319 619
	SUB-TOTAL C					R 14 515 806
9	Planning design and supervision	(% of sub-total C)	%	15%		R 2 177 371
	SUB-TOTAL D					R 16 693 177
10	VAT	(% of sub-total D)	%	0%		R 0
	NETT PROJECT COST					R 16 693 177
11	Cost of relocations		Sum			R 0
12	Cost of land acquisition		Sum			R 0
	TOTAL PROJECT COST					R 16 693 177

Table B.1: Bill of quantities (BoQ) for the bulk pumpstation

Table B.2:Bill of quantities (BoQ) for the Kwelaba-Ntwana, Enkwelaba Ntwana,Mkobeni Kamensia and Xosheyake booster pumpstation

K	welaba-Ntwana, Enkwelaba	Ntwana, Mkobeni K BoC	amensia Q	and Xosheyal	ke Booster I	Pumpstation
	Description		Units	Rate	Quantity	Amount
1	Mechanical and Electrical		Sum	R 1 716 313	1	R 1 716 313
2	Civils	(% of 1)	%	30%		R 514 894
3	Landscaping	(% of 1-2)	%	2%		R 44 624
4	Miscellaneous	(% of 1-2)	%	10%		R 223 121
	SUB-TOTAL A					R 2 498 951
5	Preliminary and General	(% of sub-total A)	%	10%		R 249 895
6	Preliminary Works	a) access roads	km			R 0
		b) electricity to site	Sum			R 0
		c) Water to site (for construction)	Sum			R 0
		d) Railhead and materials handling	Sum			R 0
7	Accommodation		Sum			R 0
	SUB-TOTAL B				•	R 2 748 847
8	Contingencies	(% of sub-total B)	%	10%		R 274 885
	SUB-TOTAL C					R 3 023 731
9	Planning design and supervision	(% of sub-total C)	%	15%		R 453 560
	SUB-TOTAL D					R 3 477 291
10	VAT	(% of sub-total D)	%	0%		R 0
	NETT PROJECT COST					R 3 477 291
11	Cost of relocations		Sum			R 0
12	Cost of land acquisition		Sum			R 0
	TOTAL PROJECT COST					R 3 477 291

Appendix C

Detailed BoQ of the pipeline network required to supply the Smithfield Dam local WSS from the dam (based on VAPS)

C-2

Table C.1:Bill of quantities (BoQ) for the pipeline network

	Pipeline network - Bill of Quantities					
	Description		Units	Rate	Quantity	Amount
1	Route Clearing & grubbing	a) sparse	ha	R 5 641	0	R 0
		b) bush	ha	R 16 924	90	R 1 520 560
		c) trees	ha	R 28 207	0	R 0
2	River and Road Crossings		Sum	R 32 750	12	R 393 000
3	Benching (Forming and Terrace)	a) all materials	m ³	R 36	0	R 0
		b) extra over for rock	m ³	R 85	0	R 0
4	Trench excavation and Backfilling	a) all materials	m ³	R 81	104961	R 8 459 122
		b) extra over for rock (% of a)	m ³	R 0		R 845 912
		c) bed preparation	m	R 40	89844	R 3 620 381
5	Pipelines	a) supply of pipes to site	m	R 6 892 816	1	R 5 277 266
		b) laying and jointing (% of a)	%	20%	1	R 1 055 453
0		c) cathodic protection	m	R 9	48578	R 563 514
6	Concrete including Formwork	a) valve chambers & mannoles	Sum 3	R 10 600	162	R 1 717 200
7	Deinforcing	b) thrust blocks & encasings	m°	R 1	8984	R 9 143
0	Reinforcing Machanical Itama	a) looloting volvoo 50mm	t Sum	R 10 074	0	R U
0	Mechanical items	a) isolating valves somm	Sum	R 1 551	4	R 0 204
		75 mm	Sum	R 1 551	3	R 4 653
		90 mm	Sum	R 1 331	4	R 4 896
		110 mm	Sum	R 1 939	1	R 1 939
		125 mm	Sum	R 2 155	1	R 2 155
		140 mm	Sum	R 2 427	0	R 0
		160 mm	Sum	R 2 577	3	R 7 731
		200 mm	Sum	R 3 845	0	R 0
		b) Air valves 25mm	Sum	R 9 844	69	R 679 237
		50mm	Sum	R 14 964	21	R 314 244
		c) Scour valves 50mm	Sum	R 3 811	9	R 34 299
		63 mm	Sum	R 4 971	4	R 19 883
		75 mm	Sum	R 6 379	5	R 31 895
		90 mm	Sum	R 8 947	7	R 62 631
		110 mm	Sum	R 13 090	3	R 39 269
		125 mm	Sum	R 13 090	2	R 26 179
		140 mm	Sum	R 16 155	0	R U R 06 020
		200 mm	Sum	R 10 155	0	R 90 930
		d) Surge protection valves 50mm	Sum	R 1 569	4	R 6 275
		63 mm	Sum	R 3 159	2	R 6 319
		75 mm	Sum	R 3 159	3	R 9 478
		90 mm	Sum	R 4 592	4	R 18 370
		110 mm	Sum	R 4 592	1	R 4 592
		125 mm	Sum	R 11 248	1	R 11 248
		140 mm	Sum	R 11 248	0	R 0
		160 mm	Sum	R 11 248	3	R 33 743
		200 mm	Sum	R 7 275	0	R 0
		b) structural steelwork	t	R 20 148	0	R 0
9	Landscaping	(% of 1-8)	%	5%		R 1 244 441
10	Miscellaneous	(% of 1-8)	%	10%		R 2 488 882
			0(0.00/		R 28 622 147
11	Preliminary and General	(% of sub-total A)	%	30%	0	R 8 586 644
12	Preliminary works	a) access roads	KIII Sum	K 241 778	0	RU
		c) Water to site (for construction)	Sum	RO	0	RO
		d) Railhead and materials handling	Sum	RO	0 0	RU
13	Accommodation		Sum	R 0	0	R 0
-	SUB-TOTAL B	•				R 37 208 791
14	Contingencies	(% of sub-total B)	%	10%		R 3 720 879
	SUB-TOTAL C	·······				R 40 929 670
15	Planning design and supervision	(% of sub-total C)	%	15%		R 6 139 451
	SUB-TOTAL D					R 47 069 121
16	VAT	(% of sub-total D)	%	0%		R 0
	NETT PROJECT COST					R 47 069 121
17	Cost of relocations		Sum	R 0		R 0
18	Cost of land acquisition		Sum	R 0		R 0
	TOTAL PROJECT COST					R 47 069 121

Appendix D

General assumptions for the URV

calculation of the Smithfield Dam WSS

1. CAPITAL COST

- a) Prices representative of 2013 prices.
- b) 10% for engineering fees and 10% for environmental and social costs is added.
- c) VAT is excluded as the capital gain for governmental purposes is not included in the cost to the economy.

2. OPERATION AND MAINTENANCE

- a) Maintenance costs based on:
 - Civil: 0.25% of the capital cost as an annual maintenance cost
 - Pipelines: 0.5% of the capital cost as an annual maintenance cost
 - Mechanical & Electrical: 4.0% of the capital cost as an annual maintenance cost
- b) Operation costs based on pumping requirements and the marginal cost of coal or nuclear power:
 - Coal: R0.60/kWh for coal fired power with the following transmission fees:
 Natal 10%
 - Nuclear: R1.20/kWh for nuclear power with the following transmission fees:
 - Natal 2%
- c) Coal fired power assumed R0.60/kWh up to 2019, with a blend of coal and nuclear from 2020 onwards at R0.90/kWh. Transmission fees taken as 5% across the country for the coal/nuclear blend.

3. WATER DELIVERY AND PROJECT TIMING

- a) The *Smithfield Dam local WSS* to start delivering water in the same year than the anticipated end of construction of Smithfield Dam in 2023.
- b) Water delivery was grown based on the anticipated growth in population from 2013 to 2063.

4. URV CALCULATIONS

- a) URV calculated for a discount rate of 8% and discounted back to 2013 prices.
- b) URV calculated over a 50 year period (40 years from date of first water delivery).
- c) No allowance made for residual values.

5. PUMPING

0

- a) Pumping 22 hours out of 24 per day (this is 92% of the time which is slightly conservative, but compatible with the DWA standard of 95%).
- b) 33% of the capital cost for pump stations assumed to be civil costs and the remainder (67%) mechanical and electrical costs.

6. TREATMENT COSTS

- a) As the **Smithfield Dam local WSS** needs to deliver potable water to communities the costs of treating the raw water from Smithfield Dam to potable water standards were included in the URV calculation.
- b) An average operating and maintenance costs of treatment of R1/m³ was used.

Appendix E

URV calculation

E-2

Table E.1: URV calculation sheet 1

YEAR 2013 2014 2015 2016	CAP. 0 0						Discount rate =	8
YEAR 2013 2014 2015 2016	CAP. 0 0						Dase year =	2023
2013 2014 2015 2016	САР. 0 0				NPC		Water Supply	NPV
2013 2014 2015 2016	0		ENERGY	CAP.	MAINTENANCE	ENERGY	(mcm)	(m^3)
2015 2015 2016	V	0	0	0	0	0	0	0
2016	0	0	0	0	0	0	0	0
0047	0	0	0	0	0	0	0	0
2017	0	0	0	0	0	0	0	0
2018	0	0	0	0	0	0	0	0
2019	0	0	0	0	0	0	0	0
2020	0	0	0	0	0	0	0	0
2021	0	0	0	0	0	0	0	0
2022	0	0	0	0	0	0	0	0
2023	113 702 657	1 597 127	2 858 013	52 666 330	739 779	1 323 813	0.576	266 575
2024	0	1 605 041	2 897 311	0	688 374	1 242 607	0.583	250 223
2025	0	1 612 954	2 936 609	0	640 526	1 166 168	0.591	234 830
2026	0	1 620 867	2 975 906	0	595 990	1 094 235	0.599	220 345
2027	0	1 628 781	3 015 204	0	554 536	1 026 560	0.607	206 717
2028	0	1 636 694	3 054 502	0	515 954	962 906	0.615	193 899
2029	0	1 652 521	3 133 007	0	400 045	846 770	0.623	170 515
2030	0	1 660 434	3 172 395	0	415 522	793 889	0.639	159 865
2032	0	1 668 347	3 211 693	0	386 576	744 188	0.647	149 856
2033	0	1 676 261	3 250 990	0	359 639	697 494	0.655	140 454
2034	0	1 684 174	3 290 288	0	334 571	653 635	0.663	131 622
2035	0	1 692 087	3 329 586	0	311 243	612 446	0.670	123 328
2036	0	1 700 001	3 368 883	0	289 536	573 772	0.678	115 540
2037	0	1 707 914	3 408 181	0	269 337	537 468	0.686	108 229
2038	0	1 715 827	3 447 479	0	250 542	503 394	0.694	101 368
2039	0	1 723 741	3 486 776	0	233 053	471 418	0.702	94 929
2040	0	1 731 654	3 526 074	0	216 780	441 418	0.710	88 888
2041	0	1 739 567	3 565 372	0	201 640	413 276	0.718	83 221
2042	0	1 747 481	3 604 669	0	187 553	386 880	0.726	77 906
2043	0	1 755 394	3 643 967	0	174 446	362 128	0.734	72 921
2044	0	1 763 307	3 683 265	0	162 253	338 919	0.742	68 248
2045	0	1 770 134	3 722 302	0	100 908	317 102	0.750	50 760
2040	0	1 787 047	3 801 158	0	130 535	230 709	0.756	55 911
2048	0	1 794 961	3 840 456	0	121 401	259 747	0.703	52 305
2049	0	1 802 874	3 879 753	0	112 904	242 968	0.781	48 926
2050	0	1 810 787	3 919 051	0	105 000	227 249	0.789	45 761
2051	0	1 818 701	3 958 349	0	97 647	212 526	0.797	42 796
2052	0	1 826 614	3 997 646	0	90 807	198 737	0.805	40 019
2053	0	1 834 527	4 036 944	0	84 445	185 824	0.813	37 419
2054	0	1 842 441	4 076 242	0	78 527	173 734	0.821	34 985
2055	0	1 850 354	4 115 539	0	73 023	162 416	0.829	32 706
2056	0	1 858 267	4 154 837	0	67 903	151 821	0.837	30 572
2057	0	1 866 181	4 194 135	0	63 141	141 905	0.845	28 575
2058	0	1 874 094	4 233 432	0	58 /11	132 624	0.852	26 706
2059	0	1 882 007	4 272 730	0	54 592	123 940	0.860	24 958
2000	0	1 807 921	4 312 028	0	50 761 47 107	109 212	0.808	23 322
2001	0	1 905 7/7	4 301 525	0	47 197	100 213	0.870	21 791
2002	0	1 913 661	4 429 921	0	40 802	94 451	0.892	19 020
_000	113 702 657	71 971 155	149 402 651	52 666 330	10 067 062	19 621 105	30.085	3 951 082
				64	12	24		
		.	Discount rate	0	0/			
		Ľ	Discount rate	8	7 0			

NPV water 3 951 0
URV (R/m3) 20.

E-3

Operation/Energy Cos NPC Water supply Other infrastructure **Pumping Stations** (WTW and Reservoirs) Systen Required Yield Water Energy Maintenanc System Water pumped/ Engineering Water Social Energy Capital costs Energy costs Pipeline Environmenta Delivery costs chan echanio fees ailahilit ugmentatio Potential equireme released Demano Civil and Civil and No. Year Electrica Electrica River losses 0% 201 1 201 0.00 0.00 0.0 0.00 0.00 0.00 0.00 0.00 0.00 0.0 2 201 3 201 4 201 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 5 20 0.00 0.00 0.00 0.00 0.00 6 201 7 202 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 8 2021 9 2022 10 2023 11 2024 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 113 702 657 1 597 127 2 858 013 47 069 121 6 656 254 13 514 214 4 274 018 9 475 221 4 737 61 4 737 61 2 85 23 238 607 0.58 0.58 0.89 0.58 0.58 2 474 0.58 1 605 041 2 897 31 0.58 0.89 0.58 0.58 2 508 2 897 12 2025 13 2026 1 612 954 2 936 609 0.59 0.59 0.89 0.59 0.59 2 543 2 93 0.60 0.89 0.60 2 975 1 620 867 2 975 906 0.60 0.60 2 577 14 2027 15 2028 1 628 781 3 015 204 0.61 0.61 0.89 0.61 0.61 2 611 3 015 3 054 50 0.62 0.89 1 636 694 0.62 0.62 0.62 2 645 3 054 15 2028 16 2029 17 2030 18 2031 19 2032 20 2033 21 2034 22 2035 23 2036 24 2037 3 093 800 3 133 097 1 644 607 0.62 0.62 0.89 0.62 0.62 2 679 3 093 1 652 521 0.63 0.63 0.63 0.63 2713 3 133 3 172 39 3 211 693 0.64 0.65 0.64 0.65 0.64 0.65 0.64 0.65 3 172 3 21 3 25 1 660 434 0.89 2 747 1 668 347 2 781 0.65 0.66 1 676 26 3 250 99 0.65 0.6 0.6 2 815 0.8 1 684 174 3 290 288 0.66 0.89 0.66 0.66 3 290 2 849 1 692 087 3 329 586 0.67 0.68 0.67 0.89 0.67 0.67 2 883 3 329 0.68 1 700 001 0.68 0.89 3 368 883 0.68 2 917 3 36 3 408 1 707 914 3 408 18 0.69 0.69 0.89 2 951 0.69 0.69 25 2038 1 715 827 0.69 3 447 479 0.69 0.89 0.69 0.69 2 985 3 447 25 2038 26 2039 27 2040 28 2041 29 2042 30 2043 31 2044 32 2045 33 2046 34 2047 1 723 741 3 486 776 0.70 0.70 0.89 0.70 0.70 3 486 3 0 1 9 0.71 1 731 654 3 526 074 0.71 0.89 0.71 0.71 3 526 3 053 1 739 567 3 565 37 0.72 0.73 0.72 0.89 0.72 3 56 0.72 3 087 1 747 481 3 604 669 0.73 0.89 0.73 0.73 3 121 3 60 1 755 394 3 643 96 0.73 0.73 0.89 0.73 0.73 3 155 3 643 3 683 3 722 1 763 307 3 683 265 0.74 0.74 0.74 3 189 0.89 0.74 1 771 221 0.75 0.75 0.89 0.75 0.75 3 223 3 722 562 1 779 134 3 761 86 0.76 0.76 0.89 0.76 0.76 3 257 3 76 1 787 047 3 801 15 0.77 0.89 0.77 0.77 3 291 3 80 34 2047 35 2048 36 2049 37 2050 38 2051 39 2052 40 2053 41 2054 42 2055 1 794 961 3 840 456 0.77 0.77 0.89 0.77 0.77 3 325 3 840 1 802 874 3 879 75 0.78 0.78 0.89 0.78 0.78 3 359 3 87 1 810 787 3 919 05 0.79 0.79 0.89 0.79 3 393 3 91 0.79 1 818 701 3 958 349 0.80 0.80 0.89 0.80 0.80 3 427 3 95 1 826 614 3 997 646 0.81 0.81 0.89 0.81 0.81 3 461 3 997 1 834 527 4 036 944 0.81 0.81 0.89 0.81 0.81 3 495 4 036 0.82 0.83 1 842 441 4 076 242 0.82 0.89 0.82 0.82 3 529 4 07 0.83 0.83 0.83 1 850 354 4 115 53 3 563 4 11 42 2033 43 2056 44 2057 45 2058 46 2059 47 2060 48 2061 49 2062 50 2063 1 858 267 4 154 837 0.84 0.84 0.89 0.84 0.84 3 597 4 15 0.89 4 194 135 0.84 0.84 0.84 0.84 4 19 1 866 181 3 631 1 874 094 4 233 432 0.85 0.85 0.89 0.85 0.85 3 665 4 23 1 882 007 0.86 0.89 0.86 4 272 730 0.86 0.86 3 699 4 272 1 889 921 1 897 834 4 312 028 4 351 329 0.87 0.88 4 312 4 351 0.87 0.88 0.8 0.87 0.88 0.87 3 733 0.89 0.88 3 767 1 905 747 0.88 0.89 4 390 62 0.88 0.88 0.8 3 801 3 835 4 390 1 913 661 0.89 0.89 4 429 92 0.89 4 42 71 971 155 149 402 651 47 069 121 6 656 254 13 514 214 23 238 607 4 274 018 9 475 221 4 737 611 4 737 611 30 129 353 149 402 Sum 113 702 657 30 30 30 37

Table E.2: URV calculation sheet 2 (Capital, maintenance and operational costs)

Fost Puppling Station Other (WTW and Reservoirs) WTP operation (Excl. elec) Total Maintenance Cost 0	ts		_			
0 0	Cost	Pipeline	Pumping Station	Other infrastructure (WTW and Reservoirs)	WTP operation (Excl. elec)	Total Maintenance Cost
0 0	0	0	0	0	0	0
0 0	0	0	0	0	0	0
0 0	0	0	0	0	0	0
0 0	0	0	0	0	0	0
0 0	0	0	0	0	0	0
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	0	0	0	0	0	0
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	0	0	0	0	0	0
0 0	0	0	0	0	0	0
0 0 0 0 0 0 3 013 235 346 557 209 229 057 575 515 1 597 127 7 311 235 346 557 209 229 057 583 429 1 612 954 5 009 235 346 557 209 229 057 599 255 1 620 867 5 204 235 346 557 209 229 057 607 169 1 628 781 4 502 235 346 557 209 229 057 630 909 1 636 694 3 800 235 346 557 209 229 057 630 909 1 682 521 2 395 235 346 557 209 229 057 630 909 1 682 847 1 693 235 346 557 209 229 057 664 6735 1 668 347 0 990 235 346 557 209 229 057 670 475 1 692 087 3 883 235 346 557 209 229 057 678 389 1 700 042 1 747 235 346 557 209 229 057 701 421 1 731 657 3 77 235 346<	0	0	0	0	0	0
3 013 235 346 557 209 229 057 553 429 1 605 041 3 609 235 346 557 209 229 057 599 342 1 612 954 5 906 235 346 557 209 229 057 6599 255 1 620 867 5 204 235 346 557 209 229 057 615 082 1 636 694 4 502 235 346 557 209 229 057 630 909 1 652 621 2 305 235 346 557 209 229 057 630 909 1 652 621 2 305 235 346 557 209 229 057 638 822 1 660 434 1 993 235 346 557 209 229 057 664 649 1 676 261 0 990 235 346 557 209 229 057 662 562 1 684 174 0 586 233 346 557 209 229 057 662 562 1 684 174 0 586 233 346 557 209 229 057 670 475 1 692 087 3 883 235 346 557 209 229 057 770 2129 1 7123 741	0	0	0	0	0	0
7.311 235 346 557 209 229 057 583 429 1 605 041 6 009 233 346 557 209 229 057 591 342 1 612 954 5 204 235 346 557 209 229 057 607 169 1 628 781 4 502 235 346 557 209 229 057 615 082 1 636 694 3 000 235 346 557 209 229 057 630 909 1 652 521 3 097 235 346 557 209 229 057 630 909 1 652 521 2 395 235 346 557 209 229 057 664 6735 1 668 347 0 990 235 346 557 209 229 057 664 6735 1 682 087 2 385 235 346 557 209 229 057 670 475 1 692 087 3 883 235 346 557 209 229 057 670 475 1 692 087 3 883 235 346 557 209 229 057 670 475 1 692 087 3 883 235 346 557 209 229 057 701 042 1 715 827 3 77 235 346 557 209 229 057 710 042 1 731 654	8 013	235 346	557 209	229 057	575 515	1 597 127
6 609 235 346 557 209 229 057 591 342 1 612 954 5 006 235 346 557 209 229 057 607 169 1 628 781 4 502 235 346 557 209 229 057 615 082 1 636 694 3 800 235 346 557 209 229 057 630 909 1 652 521 2 395 235 346 557 209 229 057 638 822 1 660 434 1 693 235 346 557 209 229 057 664 649 1 676 261 0 288 235 346 557 209 229 057 662 562 1 684 174 0 586 235 346 557 209 229 057 662 562 1 684 174 0 586 235 346 557 209 229 057 678 389 1 700 018 1 811 235 346 557 209 229 057 702 129 1 723 741 3 074 235 346 557 209 229 057 710 042 1 73 956 3 77 235 346 557 209 229 057 717 955 1 739 567 <	7 311	235 346	557 209	229 057	583 429	1 605 041
5 906 235 346 557 209 229 057 599 255 1 620 867 5 204 235 346 557 209 229 057 601 1692 1 636 694 4 502 235 346 557 209 229 057 630 909 1 652 521 2 395 235 346 557 209 229 057 638 622 1 660 434 1 693 235 346 557 209 229 057 663 6429 1 676 261 0 990 235 346 557 209 229 057 662 662 1 684 174 0 288 235 346 557 209 229 057 670 475 1 692 087 3 883 235 346 557 209 229 057 674 389 1 700 001 3 181 235 346 557 209 229 057 694 215 1 715 827 5 776 235 346 557 209 229 057 702 129 1 723 741 3 074 235 346 557 209 229 057 710 042 1 731 654 5 372 235 346 557 209 229 057 717 955 1 739 567	6 6 6 0 9	235 346	557 209	229 057	591 342	1 612 954
5 204 235 346 557 209 229 057 607 169 1 628 781 4 502 235 346 557 209 229 057 615 082 1 636 694 3 800 235 346 557 209 229 057 630 909 1 652 521 2 395 235 346 557 209 229 057 638 822 1 660 434 1 693 235 346 557 209 229 057 664 6735 1 668 347 0 990 235 346 557 209 229 057 662 562 1 684 174 0 586 235 346 557 209 229 057 678 389 1 700 001 3 883 235 346 557 209 229 057 678 389 1 700 001 3 181 235 346 557 209 229 057 702 129 1 723 741 5 776 235 346 557 209 229 057 710 042 1 731 654 5 772 235 346 557 209 229 057 717 955 1 739 567 4 669 235 346 557 209 229 057 741 695 1 763 307	5 906	235 346	557 209	229 057	599 255	1 620 867
4 502 235 346 557 209 229 057 615 082 1 636 694 3 800 235 346 557 209 229 057 622 995 1 644 607 2 395 235 346 557 209 229 057 638 822 1 660 434 1 693 235 346 557 209 229 057 646 735 1 668 347 0 990 235 346 557 209 229 057 664 6735 1 668 347 0 990 235 346 557 209 229 057 662 562 1 684 174 0 586 235 346 557 209 229 057 670 475 1 692 087 3 883 235 346 557 209 229 057 678 389 1 700 001 3 181 235 346 557 209 229 057 686 302 1 707 914 7 479 235 346 557 209 229 057 702 129 1 733 741 5 074 235 346 557 209 229 057 710 042 1 731 654 5 074 235 346 557 209 229 057 717 955 1 739 567 4 669 235 346 557 209 229 057 741 695 1 763 307	5 204	235 346	557 209	229 057	607 169	1 628 781
3800 235 346 557 209 229 057 630 909 1 644 60/ 3 097 235 346 557 209 229 057 630 909 1 652 521 2 395 235 346 557 209 229 057 646 735 1 668 347 0 990 235 346 557 209 229 057 654 649 1 676 261 0 288 235 346 557 209 229 057 670 475 1 692 087 3 883 235 346 557 209 229 057 678 389 1 700 001 3 181 235 346 557 209 229 057 686 302 1 707 914 7 479 235 346 557 209 229 057 702 129 1 723 741 3 077 235 346 557 209 229 057 710 042 1 731 664 4 669 235 346 557 209 229 057 710 042 1 731 654 4 669 235 346 557 209 229 057 741 695 1 763 307 2 235 346 557 209 229 057 749 609 1 771 221 3 867	4 502	235 346	557 209	229 057	615 082	1 636 694
3 097 235 346 557 209 229 057 638 822 1 660 434 2 395 235 346 557 209 229 057 646 735 1 668 347 0 990 235 346 557 209 229 057 662 662 1 684 174 0 990 235 346 557 209 229 057 662 562 1 684 174 0 586 235 346 557 209 229 057 676 389 1 700 001 3 883 235 346 557 209 229 057 686 302 1 707 914 7 479 235 346 557 209 229 057 686 302 1 707 914 7 479 235 346 557 209 229 057 702 129 1 723 741 5 074 235 346 557 209 229 057 710 042 1 731 654 5 372 235 346 557 209 229 057 772 5869 1 747 481 3 967 235 346 557 209 229 057 741 695 1 763 307 2 562 235 346 557 209 229 057 774 9609 1 771 221	3 800	235 346	557 209	229 057	622 995	1 644 607
2.35 2.35 346 557 209 229 057 646 735 1 668 347 0.990 2.35 346 557 209 229 057 664 6735 1 668 347 0.990 2.35 346 557 209 229 057 662 662 1 684 174 0.588 2.35 346 557 209 229 057 670 475 1 692 087 3 883 2.35 346 557 209 229 057 676 8389 1 700 01 3 181 2.35 346 557 209 229 057 702 129 1 723 741 5074 2.35 346 557 209 229 057 741 695 1 733 747 748 3067 2.35 346	3 097	235 346	557 209	229 057	630 909	1 652 521
1930 233 340 537 229 057 664 649 1676 261 1980 235 346 557 209 229 057 662 662 1684 174 19586 235 346 557 209 229 057 662 662 562 1 684 174 19586 235 346 557 209 229 057 678 389 1 700 001 3 181 235 346 557 209 229 057 664 302 1 707 10 421 1 715 827 6776 235 346 557 209 229 057 710 042 1 731 654 5372 235 346 557 209 229 057 741 695 1<763	2 395	235 346	557 209	229 057	646 725	1 660 434
235 245 245 047 047 047 235 245 557 209 229 057 662 662 1684 174 2586 235 346 557 209 229 057 670 475 1 692 087 3883 235 346 557 209 229 057 678 389 1 700 001 3 181 235 346 557 209 229 057 664 6302 1 715 827 5 776 235 346 557 209 229 057 702 129 1 723 741 3 074 235 346 557 209 229 057 710 042 1 731 654 3 967 235 346 557 209 229 057 741 695 1<763	1 093	235 346	557 209	229 037	654 649	1 676 261
235 235 246 557 209 229 057 670 475 1 692 087 3883 235 346 557 209 229 057 678 389 1 700 001 3 181 235 346 557 209 229 057 686 302 1 707 914 7 479 235 346 557 209 229 057 694 215 1 715 27 711 042 1 731 654 5 77 235 346 557 209 229 057 710 042 1 731 654 5 77 235 346 557 209 229 057 713 782 1 763 307 235 346 557 209 229 057 741 609 1 771 212 1 763 307 225 235	0 288	235 346	557 209	229 057	662 562	1 684 174
3 883 235 346 557 209 229 057 678 389 1 700 001 3 181 235 346 557 209 229 057 686 302 1 707 914 7 479 235 346 557 209 229 057 686 302 1 707 914 7 479 235 346 557 209 229 057 702 129 1 715 827 3 776 235 346 557 209 229 057 710 042 1 731 654 5 074 235 346 557 209 229 057 710 042 1 731 654 5 072 235 346 557 209 229 057 712 5869 1 747 481 3 967 235 346 557 209 229 057 741 695 1 763 307 2 662 235 346 557 209 229 057 749 609 1 771 221 1 860 235 346 557 209 229 057 765 435 1 787 047 2 652 235 346 557 209 229 057 778 349 1 794 961 1 158 235 346 557 209 229 057 781 72 1 810 707	9 586	235 346	557 209	229 057	670 475	1 692 087
3 181 235 346 557 209 229 057 686 302 1 707 914 7 479 235 346 557 209 229 057 694 215 1 715 827 5 776 235 346 557 209 229 057 710 042 1 731 654 5 372 235 346 557 209 229 057 710 042 1 731 654 669 235 346 557 209 229 057 713 955 1 739 567 4 669 235 346 557 209 229 057 741 695 1 763 307 2 235 346 557 209 229 057 774 609 1 771 214 1 1860 235 <td>8 883</td> <td>235 346</td> <td>557 209</td> <td>229 057</td> <td>678 389</td> <td>1 700 001</td>	8 883	235 346	557 209	229 057	678 389	1 700 001
7 479 235 346 557 209 229 057 694 215 1 715 827 5 776 235 346 557 209 229 057 702 129 1 723 741 5 076 235 346 557 209 229 057 710 042 1 731 654 5 372 235 346 557 209 229 057 717 955 1 739 567 4 669 235 346 557 209 229 057 713 956 1 747 481 3 967 235 346 557 209 229 057 733 782 1 755 394 3 265 235 346 557 209 229 057 741 695 1 763 307 2 662 235 346 557 209 229 057 749 609 1 771 221 1 860 235 346 557 209 229 057 765 435 1 787 047 0 456 235 346 557 209 229 057 765 435 1 787 047 0 456 235 346 557 209 229 057 781 262 1 802 874 0 51 235 346 557 209 229 057 789 175 1 810 787 3 349 235 346 557 209 229 057 789 175 1 810 787	8 181	235 346	557 209	229 057	686 302	1 707 914
6776 235 346 557 209 229 057 702 129 1 723 741 5074 235 346 557 209 229 057 710 042 1 731 654 5372 235 346 557 209 229 057 717 955 1 739 567 669 235 346 557 209 229 057 725 869 1 747 481 3 967 235 346 557 209 229 057 733 782 1 755 394 3 265 235 346 557 209 229 057 741 695 1 763 307 2 662 235 346 557 209 229 057 774 9 609 1 771 221 1 860 235 346 557 209 229 057 765 435 1 787 047 0 456 235 346 557 209 229 057 773 349 1 794 961 2 753 235 346 557 209 229 057 781 262 1 802 874 0 51 235 346 557 209 229 057 789 175 1 810 787 3 349 235 346 557 209 229 057 805 002 1 826 614 <td< td=""><td>7 479</td><td>235 346</td><td>557 209</td><td>229 057</td><td>694 215</td><td>1 715 827</td></td<>	7 479	235 346	557 209	229 057	694 215	1 715 827
6 074 235 346 557 209 229 057 710 042 1 731 654 5 372 235 346 557 209 229 057 717 955 1 739 567 4 669 235 346 557 209 229 057 725 869 1 747 481 3 967 235 346 557 209 229 057 733 782 1 755 394 3 265 235 346 557 209 229 057 741 695 1 763 307 2 562 235 346 557 209 229 057 749 609 1 771 221 1 860 235 346 557 209 229 057 765 435 1 787 047 1 158 235 346 557 209 229 057 765 435 1 787 047 0 456 235 346 557 209 229 057 773 349 1 794 961 2 753 235 346 557 209 229 057 781 262 1 802 874 0 51 235 346 557 209 229 057 789 175 1 810 787 3 349 235 346 557 209 229 057 805 002 1 826 614	6 776	235 346	557 209	229 057	702 129	1 723 741
5 372 235 346 557 209 229 057 717 955 1 739 567 4 669 235 346 557 209 229 057 725 869 1 747 481 3 967 235 346 557 209 229 057 733 782 1 755 394 3 265 235 346 557 209 229 057 741 695 1 763 307 2 562 235 346 557 209 229 057 741 695 1 763 307 2 562 235 346 557 209 229 057 741 695 1 779 134 1 158 235 346 557 209 229 057 773 349 1 794 961 9 753 235 346 557 209 229 057 781 262 1 802 874 9 051 235 346 557 209 229 057 781 765 1 810 787 3 349 235 346 557 209 229 057 780 175 1 810 787 3 349 235 346 557 209 229 057 805 002 1 826 614 6 544 235 346 557 209 229 057 812 915 1 834 527	6 074	235 346	557 209	229 057	710 042	1 731 654
4 669 235 346 557 209 229 057 725 869 1 747 481 3 967 235 346 557 209 229 057 733 782 1 755 394 3 265 235 346 557 209 229 057 741 695 1 763 307 2 662 235 346 557 209 229 057 749 609 1 771 221 1 860 235 346 557 209 229 057 757 522 1 779 134 1 158 235 346 557 209 229 057 773 349 1 794 961 3 753 235 346 557 209 229 057 778 1262 1 802 874 9 051 235 346 557 209 229 057 781 1262 1 802 874 9 051 235 346 557 209 229 057 781 175 1 810 787 7 646 235 346 557 209 229 057 797 089 1 818 701 7 646 235 346 557 209 229 057 805 002 1 834 527 5 242 235 346 557 209 229 057 820 829 1 842 441	5 372	235 346	557 209	229 057	717 955	1 739 567
3 967 235 346 557 209 229 057 733 782 1 755 394 3 265 235 346 557 209 229 057 741 695 1 763 307 2 562 235 346 557 209 229 057 749 609 1 771 221 1 880 235 346 557 209 229 057 757 522 1 779 134 1 158 235 346 557 209 229 057 765 435 1 787 047 0 456 235 346 557 209 229 057 773 349 1 794 961 0 753 235 346 557 209 229 057 781 1262 1 800 874 3 051 235 346 557 209 229 057 797 089 1 818 701 7 646 235 346 557 209 229 057 805 002 1 826 614 3 944 235 346 557 209 229 057 812 915 1 834 527 3 242 235 346 557 209 229 057 820 829 1 842 441 5 539 235 346 557 209 229 057 828 742 1 850 354	4 669	235 346	557 209	229 057	725 869	1 747 481
3 265 235 346 557 209 229 057 741 695 1 763 307 2 562 235 346 557 209 229 057 749 609 1 771 221 1 860 235 346 557 209 229 057 757 522 1 779 134 1 158 235 346 557 209 229 057 765 435 1 787 047 0 456 235 346 557 209 229 057 773 349 1 794 961 0 753 235 346 557 209 229 057 781 262 1 802 874 0 051 235 346 557 209 229 057 781 175 1 810 787 3 349 235 346 557 209 229 057 797 089 1 818 701 7 646 235 346 557 209 229 057 805 002 1 826 614 3 944 235 346 557 209 229 057 820 829 1 842 441 5 539 235 346 557 209 229 057 828 742 1 850 354 4 337 235 346 557 209 229 057 844 569 1 866 181	3 967	235 346	557 209	229 057	733 782	1 755 394
2 362 235 346 557 209 229 057 749 609 1777 22 1 860 235 346 557 209 229 057 755 522 1 779 134 1 158 235 346 557 209 229 057 765 435 1 787 047 0 456 235 346 557 209 229 057 773 349 1 794 961 9 753 235 346 557 209 229 057 781 262 1 802 874 9 051 235 346 557 209 229 057 789 175 1 810 787 3 349 235 346 557 209 229 057 780 5002 1 826 614 5 944 235 346 557 209 229 057 812 915 1 834 527 6 242 235 346 557 209 229 057 820 829 1 842 441 5 539 235 346 557 209 229 057 828 742 1 850 354 4 135 235 346 557 209 229 057 824 844 1850 354 4 332 235 346 557 209 229 057 844 569 1 866 181 <	3 265	235 346	557 209	229 057	741 695	1 763 307
1600 235 340 357 205 229 057 765 435 1 178 134 158 235 346 557 209 229 057 765 435 1 787 04 0 456 235 346 557 209 229 057 773 349 1 794 961 9 753 235 346 557 209 229 057 781 262 1 802 874 3 349 235 346 557 209 229 057 789 175 1 810 787 646 235 346 557 209 229 057 812 915 1 834 527 5242 235 346 557 209 229 057 812 915 1 834 527 539 235 346 557 <t< td=""><td>2 302</td><td>235 340</td><td>557 209</td><td>229 057</td><td>749 609</td><td>1 770 124</td></t<>	2 302	235 340	557 209	229 057	749 609	1 770 124
135 235 346 557 209 229 057 773 349 1 794 961 9 753 235 346 557 209 229 057 781 262 1 802 874 9 051 235 346 557 209 229 057 781 262 1 802 874 9 051 235 346 557 209 229 057 789 175 1 810 787 3 349 235 346 557 209 229 057 780 500 1 826 614 5 944 235 346 557 209 229 057 805 002 1 826 614 5 349 235 346 557 209 229 057 828 742 1 850 354 639 235 </td <td>1 158</td> <td>235 346</td> <td>557 209</td> <td>229 037</td> <td>765 435</td> <td>1 787 047</td>	1 158	235 346	557 209	229 037	765 435	1 787 047
2353 235346 557209 229057 781262 1802874 2051 235346 557209 229057 789175 1810787 3349 235346 557209 229057 797089 1818701 7646 235346 557209 229057 805002 1826614 6 944 235346 557209 229057 805002 1826614 5 944 235346 557209 229057 820829 1834527 5 242 235346 557209 229057 820829 184241 5 539 235346 557209 229057 836655 1858267 4 135 235346 557209 229057 836655 1858267 4 135 235346 557209 229057 844569 1866181 3 432 235346 557209 229057 860395 188207 2 730 235346 557209 229057 860395 1889207 2 028 235346 557209 22	1 456	235 346	557 209	229 057	773 349	1 794 961
0 051 235 346 557 209 229 057 789 175 1 810 787 3 349 235 346 557 209 229 057 789 175 1 810 787 3 349 235 346 557 209 229 057 797 089 1 818 701 7 646 235 346 557 209 229 057 812 915 1 834 527 5 242 235 346 557 209 229 057 820 829 1 842 441 5 539 235 346 557 209 229 057 826 742 1 850 354 4 337 235 346 557 209 229 057 836 655 1 858 267 4 135 235 346 557 209 229 057 864 861 1814 944	9 753	235 346	557 209	229 057	781 262	1 802 874
3 349 235 346 557 209 229 057 797 089 1 818 701 7 646 235 346 557 209 229 057 805 002 1 826 614 5 944 235 346 557 209 229 057 812 915 1 834 527 5 242 235 346 557 209 229 057 820 829 1 842 441 5 539 235 346 557 209 229 057 828 742 1 850 354 4 837 235 346 557 209 229 057 836 655 1 858 267 4 135 235 346 557 209 229 057 844 569 1 866 181 3 432 235 346 557 209 229 057 862 482 1 874 094 2 730 235 346 557 209 229 057 868 309 1 882 007 2 028 235 346 557 209 229 057 868 309 1 889 921 1 325 235 346 557 209 229 057 868 309 1 889 921 1 325 235 346 557 209 229 057 884 135 1 905 747	9 051	235 346	557 209	229 057	789 175	1 810 787
7 646 235 346 557 209 229 057 805 002 1 826 614 5 944 235 346 557 209 229 057 812 915 1 834 527 5 242 235 346 557 209 229 057 820 829 1 842 441 5 53 235 346 557 209 229 057 820 829 1 842 441 5 539 235 346 557 209 229 057 836 655 1 850 354 4 837 235 346 557 209 229 057 844 569 1 866 181 3 432 235 346 557 209 229 057 852 482 1 874 094 2 730 235 346 557 209 229 057 860 395 1 882 007 2 028 235 346 557 209 229 057 868 309 1 889 921 1 325 235 346 557 209 229 057 868 309 1 889 921 1 325 235 346 557 209 229 057 868 309 1 889 921 1 325 235 346 557 209 229 057 884 135 1 905 747	8 349	235 346	557 209	229 057	797 089	1 818 701
3 944 235 346 557 209 229 057 812 915 1 834 527 5 242 235 346 557 209 229 057 820 829 1 842 441 5 539 235 346 557 209 229 057 828 742 1 850 354 4 837 235 346 557 209 229 057 836 655 1 858 267 4 135 235 346 557 209 229 057 844 569 1 866 181 3 432 235 346 557 209 229 057 852 482 1 874 094 2 730 235 346 557 209 229 057 860 395 1 882 007 2 028 235 346 557 209 229 057 868 309 1 889 921 1 325 235 346 557 209 229 057 868 309 1 889 921 1 325 235 346 557 209 229 057 876 222 1 897 834 0 623 235 346 557 209 229 057 884 135 1 905 747 9 921 235 346 557 209 229 057 892 049 1 913 661	7 646	235 346	557 209	229 057	805 002	1 826 614
6 242 235 346 557 209 229 057 820 829 1 842 441 5 539 235 346 557 209 229 057 828 742 1 850 354 4 837 235 346 557 209 229 057 828 655 1 858 267 4 135 235 346 557 209 229 057 844 569 1 866 181 3 432 235 346 557 209 229 057 852 482 1 874 094 2 730 235 346 557 209 229 057 860 395 1 882 007 2 028 235 346 557 209 229 057 868 309 1 889 921 3 235 346 557 209 229 057 868 309 1 889 921 3 235 346 557 209 229 057 876 222 1 897 834 0 623 235 346 557 209 229 057 884 135 1 905 747 9 201 235 346 557 209 229 057 882 049 1 913 661 9 201 235 346 557 209 229 057 892 049 1 913 661 9 2	6 944	235 346	557 209	229 057	812 915	1 834 527
5539 235 346 557 209 229 057 828 742 1 850 354 4 837 235 346 557 209 229 057 836 655 1 858 267 4 135 235 346 557 209 229 057 844 569 1 866 181 3 432 235 346 557 209 229 057 852 482 1 874 094 2 730 235 346 557 209 229 057 860 395 1 889 207 2 028 235 346 557 209 229 057 868 309 1 889 921 1 325 235 346 557 209 229 057 876 222 1 897 834 0 623 235 346 557 209 229 057 876 222 1 897 834 0 623 235 346 557 209 229 057 884 135 1 905 747 9 201 235 346 557 209 229 057 892 049 1 913 661 9 2921 235 346 557 209 229 057 892 049 1 913 661 9 649 170 22 845 576 9 304 347 30 085 062 7 4 974 455	6 242	235 346	557 209	229 057	820 829	1 842 441
4 837 235 346 557 209 229 057 836 655 1 858 267 4 135 235 346 557 209 229 057 844 569 1 866 181 3 432 235 346 557 209 229 057 852 482 1 874 094 2 730 235 346 557 209 229 057 860 395 1 882 007 2 028 235 346 557 209 229 057 868 309 1 889 921 1 325 235 346 557 209 229 057 876 222 1 897 834 1 623 235 346 557 209 229 057 884 135 1 905 747 2 921 235 346 557 209 229 057 884 135 1 905 747 2 921 235 346 557 209 229 057 892 049 1 913 661 2 921 235 346 557 209 229 057 892 049 1 913 661 2 921 235 346 557 209 229 057 892 049 1 913 661 2 9 651 9 649 170 22 845 576 9 304 347 30 085 062 7 4 74 1455 </td <td>5 539</td> <td>235 346</td> <td>557 209</td> <td>229 057</td> <td>828 742</td> <td>1 850 354</td>	5 539	235 346	557 209	229 057	828 742	1 850 354
4 135 235 346 557 209 229 057 844 569 1 866 181 3 432 235 346 557 209 229 057 852 482 1 874 094 2 730 235 346 557 209 229 057 860 395 1 882 007 2 028 235 346 557 209 229 057 868 309 1 889 921 1 325 235 346 557 209 229 057 876 222 1 897 834 0 623 235 346 557 209 229 057 884 135 1 905 747 9 921 235 346 557 209 229 057 892 049 1 913 661 9 921 235 346 557 209 229 057 892 049 1 913 661 9 9651 9 669 170 22 845 576 9 301 347 30 085 062 7 4 971 455	4 837	235 346	557 209	229 057	836 655	1 858 267
3 432 235 346 557 209 229 057 852 482 1 874 094 2 730 235 346 557 209 229 057 860 395 1 882 007 2 028 235 346 557 209 229 057 868 309 1 889 921 1 325 235 346 557 209 229 057 876 222 1 897 834 0 623 235 346 557 209 229 057 884 135 1 905 747 9 921 235 346 557 209 229 057 892 049 1 913 661 9 651 9 661 70 22 845 756 9 301 347 30 085 062 71 971 155	4 135	235 346	557 209	229 057	844 569	1 866 181
2 730 235 346 557 209 229 057 860 395 1 882 007 2 028 235 346 557 209 229 057 868 309 1 889 921 1 325 235 346 557 209 229 057 876 222 1 897 834 0 623 235 346 557 209 229 057 884 135 1 905 747 9 921 235 346 557 209 229 057 892 049 1 913 661 2 051 9 649 170 22 845 576 9 301 347 30 085 062 7 4 971 455	3 432	235 346	557 209	229 057	852 482	1 874 094
2 U28 235 340 557 209 229 057 868 309 1 889 921 1 325 235 346 557 209 229 057 876 222 1 897 834 0 623 235 346 557 209 229 057 884 135 1 905 747 9 921 235 346 557 209 229 057 892 049 1 913 661 2 921 235 346 557 209 229 057 892 049 1 913 661 2 921 235 346 557 209 229 057 892 049 1 913 661 2 651 9 649 170 22 845 576 9 301 347 30 085 062 7 4 971 455	2 730	235 346	557 209	229 057	860 395	1 882 007
1 022 233 340 357 209 229 057 876 222 1 897 834 0 623 235 346 557 209 229 057 884 135 1 905 747 9 921 235 346 557 209 229 057 892 049 1 913 661 2 651 9 649 170 22 845 576 9 301 347 30 085 062 7 4 071 455	2 028	235 346	557 209	229 057	868 309	1 889 921
3 020 235 346 557 209 229 057 892 049 1 905 747 9 921 235 346 557 209 229 057 892 049 1 913 661 2 651 9 649 170 22 845 576 9 301 347 30 085 062 7 4 071 455	1 325	235 346	557 209	229 057	8/6 222	1 005 747
2 651 9 649 170 22 845 576 9 391 347 30 085 062 71 971 155	0 023	235 340	557 209	229 057	802 040	1 900 747
	2 651	9 649 170	22 845 576	9 391 347	30 085 062	71 971 155

28.949

Table E.3: URV calculation sheet 3 (Operational costs)

Pumping info			Pipeline info Design volume	
Pumping efficiency	86	%	design velocity	
Hours operating per 24 hour	20	hrs	Pipe size	
	2013		2063	
Full delivery	18.237	l/s	28.267	l/s
Full delivery	0.576	Mcm/a	0.892	Mcm/a
Energy for full delivery	2 474.470	MWh/a		
Marginal cost of power	0.600	Rand	1.1	
Transmission factor	0.900	(cape 15%; PE 12	1.05	

		Water supply			
		Water pumping	MWh per annum	innum	
		schedule	required	Energy cost	
No.	Year	(Mcm/a)	(MWh/a)	(R)	
	2013		0	0	
1	2014		0	0	
2	2015		0	0	
3	2016		0	0	
4	2017		0	0	
5	2018		0	0	
6	2019		0	0	
7	2020		0	0	
8	2021		0	0	
9	2022		0	0	
10	2023	0.58	2 474	2 858 013	
11	2024	0.58	2 508	2 897 311	
12	2025	0.59	2 543	2 936 609	
13	2026	0.60	2 577	2 975 906	
10	2027	0.61	2 611	3 015 204	
15	2028	0.62	2 645	3 054 502	
16	2029	0.62	2 679	3 093 800	
10	2030	0.63	2 713	3 133 097	
18	2000	0.00	2 747	3 172 395	
10	2001	0.04	2 781	3 211 693	
20	2002	0.00	2 815	3 250 990	
20	2034	0.05	2 8/9	3 200 288	
21	2035	0.00	2 043	3 320 586	
22	2035	0.07	2 003	3 368 883	
24	2030	0.00	2 911	3 408 181	
25	2038	0.03	2 985	3 400 101	
26	2000	0.00	3 019	3 486 776	
20	2000	0.70	3 053	3 526 074	
28	2040	0.71	3 087	3 565 372	
20	2041	0.72	3 121	3 604 669	
20	2042	0.73	3 155	3 643 967	
31	2043	0.73	3 189	3 683 265	
32	2044	0.74	3 223	3 722 562	
33	2040	0.75	3 257	3 761 860	
34	2040	0.70	3 291	3 801 158	
35	2047	0.77	3 325	3 840 456	
36	2040	0.77	3 350	3 879 753	
37	2040	0.70	3 303	3 919 051	
38	2050	0.13	3 427	3 958 3/9	
30	2001	0.00	3 427	3 007 6/6	
40	2052	0.01	3 401	4 036 944	
-+U /1	2000	0.01	3 530	4 076 242	
41	2004	0.02	3 529	4 010 242	
42	2000	0.03	3 303	1 15 009	
43	2000	0.84	3 097 2 624	4 104 03/	
44	2007	0.84	3 03 1	4 194 130	
45	2058	0.85	3 000	4 233 432	
40	2009	0.86	3 099	4 212 130	
4/	2000	0.87	3/33	4 312 028	
40	2001	0.88	01 C	4 301 323	
49	2002	0.88	3 801	4 390 023	
50	2063	0.89	3 835	4 429 921	

mcm/a m/s		
	Design energy requirement	

MWc

Energy usage 4.30

Pipeline info

Pumping efficiency	86	%
Hours operating per 24 hour	20	hrs
Transfer volume	0.576	mcm/a
Transfer volume	0.02	m³/s

Calculated Assu Design volume 0.022 Design velocity 1.200 Friction loss slope 0.012 Pipe size 0.152

	Head	Design MW c	Annual energ
Pumpstation ⁻	1 744	0.184	
Pumpstation 2	2 504	0.124	
Pumpstation 3	3 0	0.00	
Pumpstation 4	4 0	0	
Pumpstation #	5 0	0	
Pumpstation (6 0	0	
Pumpstation :	7 0	0	
Total	1248	0.308	
Annual energ	y requiremer	2474	MWh/a

Imed			
		0.018	m³/s
	0.010	0.008	m/s
	0.000	0.000	m/m
	1.700		m

rgy requirement 1475 MWh/a 999 MWh/a 0 MWh/a 0 MWh/a 0 MWh/a 0 MWh/a 0 MWh/a 2474

Capital Cost	
16 693 177	
3 477 291	
0	
0	
0	
0	
0	
20 170 468	20 170 46